Bit-Parallel GF(2n) Squarer Using Shifted Polynomial Basis

نویسندگان

  • Xi Xiong
  • Haining Fan
چکیده

We present explicit formulae and complexities of bit-parallel shifted polynomial basis (SPB) squarers in finite field GF (2)s generated by general irreducible trinomials x+x+1 (0 < k < n) and type-II irreducible pentanomials x + x + x + xk−1 + 1 (3 < k < (n − 3)/2). The complexities of the proposed squarers match or slightly outperform the previous best results. These formulae can also be used to design polynomial basis Montgomery squarers without any change. Furthermore, we show by examples that XOR gate numbers of SPB squarers are different when different shift factors in the SPB definition, i.e., parameter v in {xi−v|0 ≤ i ≤ n−1}, are used. This corrects previous misinterpretation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GF(2n) Bit-Parallel Squarer Using Generalized Polynomial Basis For a New Class of Irreducible Pentanomials

Introduction: Squarer is an important circuit building block in squareand-multiply-based exponentiation and inversion circuits. When GF (2n) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF (2n) elements. For practical applications where values of n are often in the range ...

متن کامل

GF(2) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials

Introduction: The squarer is an important circuit building block in square-and-multiply-based exponentiation and inversion circuits. When GF(2) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF(2) elements. For practical applications where values of n are often in the range...

متن کامل

Efficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields

This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...

متن کامل

Fast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents

This contribution describes a new class of arithmetic architectures for Galois fields GF (2k). The main applications of the architecture are public-key systems which are based on the discrete logarithm problem for elliptic curves. The architectures use a representation of the field GF (2k) as GF ((2n)m), where k = n · m. The approach explores bit parallel arithmetic in the subfield GF (2n), and...

متن کامل

Montgomery Multiplier and Squarer in GF(2)

Montgomery multiplication in GF(2) is defined by a(x)b(x) r−1(x) mod f(x), where the field is generated by irreducible polynomial f(x), a(x) and b(x) are two field elements in GF(2), and r(x) is a fixed field element in GF(2). In this paper, first we present a generalized Montgomery multiplication algorithm in GF(2). Then by choosing r(x) according to f(x), we show that efficient architecture f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012