Bit-Parallel GF(2n) Squarer Using Shifted Polynomial Basis
نویسندگان
چکیده
We present explicit formulae and complexities of bit-parallel shifted polynomial basis (SPB) squarers in finite field GF (2)s generated by general irreducible trinomials x+x+1 (0 < k < n) and type-II irreducible pentanomials x + x + x + xk−1 + 1 (3 < k < (n − 3)/2). The complexities of the proposed squarers match or slightly outperform the previous best results. These formulae can also be used to design polynomial basis Montgomery squarers without any change. Furthermore, we show by examples that XOR gate numbers of SPB squarers are different when different shift factors in the SPB definition, i.e., parameter v in {xi−v|0 ≤ i ≤ n−1}, are used. This corrects previous misinterpretation.
منابع مشابه
GF(2n) Bit-Parallel Squarer Using Generalized Polynomial Basis For a New Class of Irreducible Pentanomials
Introduction: Squarer is an important circuit building block in squareand-multiply-based exponentiation and inversion circuits. When GF (2n) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF (2n) elements. For practical applications where values of n are often in the range ...
متن کاملGF(2) bit-parallel squarer using generalised polynomial basis for new class of irreducible pentanomials
Introduction: The squarer is an important circuit building block in square-and-multiply-based exponentiation and inversion circuits. When GF(2) elements are represented in a normal basis, squaring is simply a circular shift operation. Therefore, most previous works on squarers focused on other representations of GF(2) elements. For practical applications where values of n are often in the range...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملFast Arithmetic for Public-Key Algorithms in Galois Fields with Composite Exponents
This contribution describes a new class of arithmetic architectures for Galois fields GF (2k). The main applications of the architecture are public-key systems which are based on the discrete logarithm problem for elliptic curves. The architectures use a representation of the field GF (2k) as GF ((2n)m), where k = n · m. The approach explores bit parallel arithmetic in the subfield GF (2n), and...
متن کاملMontgomery Multiplier and Squarer in GF(2)
Montgomery multiplication in GF(2) is defined by a(x)b(x) r−1(x) mod f(x), where the field is generated by irreducible polynomial f(x), a(x) and b(x) are two field elements in GF(2), and r(x) is a fixed field element in GF(2). In this paper, first we present a generalized Montgomery multiplication algorithm in GF(2). Then by choosing r(x) according to f(x), we show that efficient architecture f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012